
The Delphi
CLINIC

Edited by Brian Long

Problems with your Delphi project?

Just email Brian Long, our Delphi Clinic
Editor, on blong@compuserve.com

or write/fax us at The Delphi Magazine

Window Startup Mode

QIf I make a shortcut to a
Delphi 2 app and tell it to

start minimised, the program com-
pletely ignores that flag and starts
normally. There was a reasonably
well-known fix for this for Delphi 1
apps. It fails to work in Delphi 2.

AWhen Windows starts an
application it passes a flag

along to it, indicating how the main
window should display. Delphi
takes no notice of this flag. For
Delphi 1 apps, the solution was to
check this flag (stored in the System
unit variable CmdShow) and set the
main form’s WindowState property
accordingly in its OnCreate handler
(see Listing 1).

Delphi 2 is a bit more destructive
when it comes to CmdShow: the Sys-
tem unit startup code explicitly sets
CmdShow to be one particular value
(sw_ShowNormal, or 10) thereby mak-
ing Listing 1 ineffective (though ap-
parently this will be fixed in Delphi
3). We have to be a bit more cun-
ning about retrieving the original
value which was passed in by call-
ing a suitable Win32 API (GetStar-
tupInfo). Having done that we then
proceed as before. But then
another problem comes our way.

It was reported in a Delphi Clinic
entry back in Issue 9 that Delphi 2
had a problem with minimised
forms. When a form was mini-
mised, it doesn’t minimise into the
task bar but onto (above) the task
bar. I showed some code supplied
by Borland’s Roy Nelson that
showed how to get the main form
to minimise correctly, but didn’t
explain at the time why the
“problem” occurs in the first place.

Any multi-form Delphi 1 applica-
tion (including Delphi 1 itself) has
one icon in the taskbar for each

form. This upset many people
(because other applications don’t
do this) and so Delphi 2 has one
icon on the taskbar representing
the whole application. Bearing this
in mind, consider what happens if
a secondary form gets minimised.
It would simply disappear with no
way of bringing it back. To avoid
this issue, the Delphi 2 designers
ensured that minimised forms get
placed above the taskbar in a

manner similar to minimised
Windows 95 MDI children.

But this minimised behaviour is
also applied to the main form,
which looks a bit silly. If the appli-
cation is intended to start mini-
mised then we’d expect to see an
entry on the taskbar and nothing
more. Listing 2 shows the relevant
code to add to a Delphi 2 applica-
tion to fix the minimised main form
problem and simultaneously fix the

 TForm1 = class(TForm)
 ...
 procedure DoRestore(Sender: TObject);
 end;
...
procedure TForm1.DoRestore(Sender: TObject);
begin
 Application.ShowMainForm := True;
 { Restore application }
 Perform(wm_SysCommand, sc_Restore, 0);
 { This is needed to ensure all components draw properly }
 Show;
 { Disconnect the event handler so this code will not be called again }
 Application.OnRestore := nil;
end;
procedure TForm1.FormCreate(Sender: TObject);
begin
 if WindowState = wsNormal then
 case CmdShow of
 sw_ShowNormal, sw_ShowNoActivate, sw_Show,
 sw_ShowNA, sw_Restore: WindowState := wsNormal;
 sw_ShowMinimized, sw_Minimize,
 sw_ShowMinNoActive: WindowState := wsMinimized;
 sw_ShowMaximized: WindowState := wsMaximized;
 end;
 if WindowState = wsMinimized then begin
 Application.ShowMainForm := False;
 Application.OnRestore := DoRestore;
 Application.Minimize;
 end;
end;
var StartupInfo : TStartupInfo;
initialization
 { Set up CmdShow correctly to workaround the fact that Delphi hardwires it to a
value 10 (sw_ShowNormal) }
 GetStartupInfo(StartupInfo);
 CmdShow := StartupInfo.wShowWindow;
end.

➤ Listing 2: Delphi 2 requires more that Delphi 1 does

procedure TForm1.FormCreate(Sender: TObject);
begin
 if WindowState = wsNormal then
 case CmdShow of
 sw_ShowNormal, sw_ShowNoActivate, sw_Show,
 sw_ShowNA, sw_Restore: WindowState := wsNormal;
 sw_ShowMinimized, sw_Minimize,
 sw_ShowMinNoActive: WindowState := wsMinimized;
 sw_ShowMaximized: WindowState := wsMaximized;
 end;
end;

➤ Listing 1: Starting a Delphi 1 app as Windows intended

54 The Delphi Magazine Issue 19

problem highlighted in the ques-
tion. Again, this code comes from
Roy Nelson who works in Borland’s
European Technical Team.

Note that some other solutions
that get bandied about are a bit
simpler than this and simply call
ShowWindow(Handle, CmdShow) once
CmdShow has its proper value, how-
ever this leaves the state of the
window and the WindowState prop-
erty inconsistent.

OCX Deployment

QI bought an OCX control
recently. When I tried run-

ning an application that used it on
another PC I got an EOleError ex-
ception saying that a class was not
registered. What haven’t I done?

AThe OCX is a special version
of an in-process OLE server:

it’s a DLL with some special stuff in.
OLE servers need to be registered
in the Windows registry and your
OCX hasn’t been. If you use an
installation program to deploy
your program, get it to load the
OCX with LoadLibrary and call its
DllRegisterServer function to do
this. If you need to tidy the registry
up later, you can call the OCX’s
DllUnregisterServer function.

The project OCX.DPR on the disk
has two buttons on its main form,
both of which load up a second
form with the ChartFX OCX on it.
The first button simply does a
ShowModal operation, but the sec-
ond one manually loads the OCX,
registers it, calls ShowModal and
then un-registers and unloads it.
This should be enough to show you
the necessary techniques. Listing 3
shows the button’s event handler.
To test the program, compile it and
then copy the EXE and the ChartFX
OCX (CFX32.OCX which is in the
Windows\System directory) onto
another machine. When you run
the program one button will give
the exception and the other will
work fine due to the registration.

Oracle Packages

QWe are using Delphi 1 with
Oracle 7.2 and I have trouble

getting access to procedures

stored in what Oracle calls “pack-
ages.” I can execute a procedure in
a package, using

begin
 package_name.procedure_name(
 );
end;

in a TQuery object, but I can’t get at
return parameters that this proce-
dure may produce (they always
seem to be set to zero).

AYou should be able to use a
TStoredProc to do this: the

procedure name won’t be available
in the StoredProcName drop-down
list but you can type it in using this
syntax:

 <ownername>.<packagename>.<PROCEDURENAME>

(case is important). However the
problem is that it doesn’t work.
Borland have this logged as a bug.
When you type the name in as
above, what should be passed to
Oracle is something like

“SCOTT”."MYPACK"."DUMMY"

but what the BDE erroneously
passes is

“SCOTT”."MYPACK.DUMMY"

It gets the quotes wrong. Bad luck.
However, on the brighter side,

Borland’s brand new SQL Links 3.5
appears to remedy the problem. I
recommend upgrading.

File Finding

QHow do I iterate through all
my subdirectories perform-

ing some arbitrary operation of my
choice for each one?

AThis relies on using Find-
First, FindNext, FindClose

and a TSearchRec record. Listing 4
shows a function that iterates
around the directory tree (using
recursion to go down through the
subdirectories) and calls a sup-
plied routine for each one. The call-
back must be a method that has the
same interface as the one shown in
Listing 5. The project FILELIST.DPR
on the disk uses this routine to
display all the directories on drive
C: in a memo, and show a count of
them on the form’s caption bar.
The iteration is started by double-
clicking the memo (Listing 5 again).
For speed of execution the memo is
not continuously updated, but
filled in when the iteration has fin-
ished. This is achieved by calling
the BeginUpdate and EndUpdate
methods of the TStrings object
(Lines property) in the memo.

Figures 1 and 2 show the pro-
gram having run through my hard
disk when compiled in Delphi 1 and
2. You can see that the Win32

procedure TMainForm.Button2Click(Sender: TObject);
type
 TDllFunc = function: HResult; stdcall;
var
 DLL: THandle;
 RegFunc, UnregFunc: TDllFunc;
begin
 DLL := LoadLibrary(’CFX32.OCX’);
 if DLL = 0 then
 raise Exception.Create(’OCX not found’);
 @RegFunc := GetProcAddress(DLL, ’DllRegisterServer’);
 @UnregFunc := GetProcAddress(DLL, ’DllUnregisterServer’);
 try
 if @RegFunc = nil then
 raise Exception.Create(’Registration routine not found’);
 RegFunc;
 with TOCXForm.Create(Application) do
 try
 ShowModal;
 finally
 Free
 end;
 if @UnregFunc = nil then
 raise Exception.Create(’Unregistration routine not found’);
 UnregFunc;
 finally
 FreeLibrary(DLL)
 end;
 Close
end;

➤ Listing 3

56 The Delphi Magazine Issue 19

executable gets to see all my long
file names. Note that a routine for
iterating through all directories on
all drives was featured in the Tips
& Tricks column in Issue 17. You
should look at that for other ideas.

Eating Mouse
Clicks And Key Presses

QWhen I have some code exe-
cuting in an event handler

for several seconds, or a lengthy
query executing, I set Screen.Cur-
sor to crHourglass. This gives my
users the idea that something is
going on and that they should not
go clicking all over my form. How-
ever, if they want to they can still
click on things and those clicks get
buffered up. When my code has
finished the mouse clicks are ac-
tioned. How can I stop any stray

Self.Disable;
{ the Self bit is just in case
 you’re in a with clause }
try
 {...do your processing...}
finally
 Application.ProcessMessages;
 { make sure the hardware events
 are taken by the disabled form }
 Self.Enabled := True;
end;

➤ Listing 6

procedure GetSubDirs(const Dir: String; CallBack: TCallBack);
var SearchRec: TSearchRec;
 ThisDir: String;
begin
 if FindFirst(Dir + ’*.*’, faDirectory, SearchRec) = 0 then
 try
 repeat
 { Only want directories }
 if (SearchRec.Attr and faDirectory <> 0) and
 { Don’t want current or parent directory }
 (SearchRec.Name[1] <> ’.’) then begin
 ThisDir := Dir + ’\’ + SearchRec.Name;
 if Assigned(CallBack) then
 CallBack(ThisDir);
 GetSubDirs(ThisDir, CallBack);
 end;
 until (FindNext(SearchRec) <> 0) or Application.Terminated;
 finally
 FindClose(SearchRec);
 end;
end;

➤ Listing 4

➤ Left:
Figure 1,
Delphi 1
version

➤ Right:
Figure 2,
Delphi 2
version

procedure TForm1.MyCallBack(const Directory: String);
begin
 Memo1.Lines.Add(Directory);
 Caption := IntToStr(Memo1.Lines.Count);
 Application.ProcessMessages;
end;
procedure TForm1.Memo1DblClick(Sender: TObject);
begin
 Memo1.Lines.Clear;
 Memo1.Lines.BeginUpdate;
 GetSubDirs(’c:’, MyCallBack);
 Memo1.Lines.EndUpdate;
end;

➤ Listing 5

clicks actually being received when
the code finishes executing?

AThere are ‘a number of ways
of approaching this prob-

lem. What SDK programmers used
to do in the bad old days was to
make a transparent child window
of the form that would take all the
hardware events during the busy
processing and then remove it
again when it was done. There is an
article in an old Microsoft Systems
Journal about doing it. These days,
most people will be happy dis-
abling the form and re-enabling it
afterwards (see Listing 6).

Note the important use of Appli-
cation.ProcessMessages. This must
occur somewhere between the dis-
abling and enabling of the form,
otherwise the form will be back in
its enabled state before any of the
hardware messages leave the sys-
tem message queue. This means
that after the form is re-enabled, all
the mouse clicks and keystrokes
will be fed straight to it as before.
The ProcessMessages call ensures
that they arrive at the form when it
is disabled and therefore will be
ignored (or at the most cause a
beep).

Acknowledgements
Thanks to Steve Axtell and Roy
Nelson (both from Borland’s
European Technical Team) for help
with some of this issue’s entries.

58 The Delphi Magazine Issue 19

	Window Startup Mode
	OCX Deployment
	Oracle Packages
	File Finding
	Eating Mouse Clicks And Key Presses
	Acknowledgements

